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Abstract For estimating the parameters of models for financial market data, the
use of robust techniques is of particular interest. Conditional forecasts, based on the
capital asset pricing model, and a factor model are considered. It is proposed to con-
sider least median of squares estimators as one possible alternative to ordinary least
squares. Given the complexity of the objective function for the least median of squares
estimator, the estimates are obtained by means of optimization heuristics. The per-
formance of two heuristics is compared, namely differential evolution and threshold
accepting. It is shown that these methods are well suited to obtain least median of
squares estimators for real world problems. Furthermore, it is analyzed to what extent
parameter estimates and conditional forecasts differ between the two estimators. The
empirical analysis considers daily and monthly data on some stocks from the Dow
Jones Industrial Average Index.
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1 Introduction

The estimation and analysis of the capital asset pricing model (CAPM) and other
models with more than one factor is often complicated by the fact that the distribution
of the error terms cannot be assumed to be independently identically normal. Conse-
quently, different robust estimation approaches have been considered (see, e.g., Chan
and Lakonishok 1992; Knez and Ready 1997; Martin and Simin 2003; Ronchetti and
Genton 2008).

In this contribution, we consider the classical least median of squares (LMS)
estimator (Rousseeuw 1984). Although this estimator exhibits nice properties with
regard to robustness, it is not used frequently. One possible reason is that estimation
requires to solve a complex optimization problem. In particular, the objective function
landscape is not smooth and exhibits many local optima. Consequently, traditional
optimization methods will fail. One alternative consists in exploiting the inherent dis-
crete nature of the optimization problem and resorting to a full enumeration of all
potential solutions. An algorithm built on this approach is PROGRESS proposed by
Rousseeuw and Leroy (1987).1 However, the complexity of this approach grows at a
rate of T 2 in the sample size T for the bivariate regression. If more than one factor
has to be considered, the complexity grows dramatically. Furthermore, the technique
does not allow for a simple implementation of nonlinear or constraint estimation.
Optimization heuristics have the potential to overcome these shortcomings.

Heuristic optimization techniques have been successfully applied to a variety of
problems in statistics and economics for well over a decade (see Gilli et al. (2008) and
Gilli and Winker (2009) for recent overviews). However, applications to estimation
problems are still rare. Fitzenberger and Winker (2007) consider Threshold Accept-
ing (TA) for censored quantile regression, a problem similar to the LMS estimator.2

Maringer and Meyer (2008) and Yang et al. (2007) also use TA for model selection
and estimation of smooth transition autoregressive models. In contrast, several opti-
mization heuristics have been used in other fields of research in finance, e.g., portfolio
optimization (Dueck and Winker 1992; Maringer 2005; Winker and Maringer 2007a;
Specht and Winker 2008) and credit risk bucketing (Krink et al. 2007).

We present an application to the LMS estimator. In particular, we propose imple-
mentations of TA and Differential Evolution (DE) for obtaining the LMS estimator.
We purposely select a population based search method, DE, and a local search method,
TA, to compare their efficacy on a continuous search space.3 We provide some evi-
dence on the tuning of both algorithms and the relative performance for this problem.
It turns out that the LMS estimator can be obtained quite reliably using optimization
heuristics despite of its high inherent complexity.

1 Barreto and Maharry (2006) propose a generalization for the bivariate regression without a constant. The
approach might be considered as an application of elemental subset regression (Mayo and Gray 1997).
2 In fact, Fitzenberger and Winker (2007) exploit the elemental subset properties of quantile regression for
their approach.
3 Note, that we do not take into account the implicit discrete structure of the optimization problem related to
elemental subset regression. This might reduce the performance of TA, but allows to introduce constraints
and nonlinear components in future research.
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Finally, we apply the estimator to the CAPM and a three factor model for a large set
of rolling window samples for some of the stocks comprising the Dow Jones Indus-
trial Average Index (DJIA). The estimates differ substantially for some stocks and
time periods from those obtained by ordinary least squares (OLS). We also calculate
the conditional forecasts based on the model and the actual factor values. These con-
ditional forecasts are compared with those obtained from the OLS estimates. It is also
analyzed to what extent a combination of both forecasts might reduce the forecasting
errors.

The rest of the study is organized as follows. Section 2 shortly reviews the the-
oretical background to the underlying models of the financial market and the LMS
estimator. Section 3 reports on heuristic strategies, describes the optimization prob-
lem and the algorithms used. The specific application and the empirical results are
presented in Sect. 4. In Sect. 5, we provide evidence on the rate of convergence of the
two heuristics, while Sect. 6 summarizes the main findings and provides an outlook
to further research.

2 Theoretical background

2.1 CAPM and multi-factor models

The CAPM provides a method for estimating the risk-return equilibrium. The
pioneering work by Markowitz (1952) has set the foundation of modern portfolio
management and was employed later by Sharpe (1964), Lintner (1965) and Mossin
(1966) to develop the CAPM. The CAPM describes a linear relationship between
the risk premium on individual securities relative to the risk premium on the market
portfolio. It is modeled by

ri,t − rs
t = α + β

(
rm,t − rs

t

) + εi,t , (1)

where ri,t is the rate of return at time t for asset i ; rs
t the risk-free rate of return at time

t ; α, β the parameters of CAPM; rm,t the market rate of return at time t and εi,t is the
residual at time t for asset i .

The simplicity of the CAPM, i.e., the concentration on a single risk factor, is one
of the reasons why the explanatory power of the model is limited. One extension to
the model has been proposed by Fama and French (1992). The authors emphasize the
multi-dimensionality of risks. In particular, they consider the effects of firm size and
book value to equity in explaining the cross-section of average stock returns. In another
paper, Fama and French (1993) introduce the three-factor model. They conclude that
the market factor together with a size and a book-to-market factor can explain 95% of
the variation in excess stock returns. A key finding is that the difference between small
and big firms and the difference between high and low book-to-equity value captures
variation through time.4

4 For a critical assessment of the empirical performance of the model, see, e.g., Knez and Ready (1997).
Other non parametric pricing models have also been proposed in the literature, e.g., Ince (2006) introduces
technical indicators composed of stock price and volume over time.
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The final form of the model used in our application is given by Eq. (2). The market
risk rm,t − rs

t is as for the CAPM given by the difference between the market rate of
return and the risk free rate. SMB is defined as the average return on three portfolios
comprising small firm stocks minus the average return on three portfolios comprising
larger firms. Finally, HML is the average return on two portfolios comprising firms
with high book-to-market value minus the average return on the two so called growth
portfolios with low book-to-market values.

ri,t − rs
t = α + β1

(
rm,t − rs

t

) + β2SMBt + β3 HMLt + εi,t , (2)

where rm,t − rs
t is the factor accounting for market risk premium at time (t); SMBt the

factor accounting for size premium at time t ; HMLt the factor accounting for value
premium at time t and β1, β2, and β3 are the exposure levels to the corresponding risk
factors.

2.2 LMS

A substantial amount of research in financial market economics has focused on
estimating the parameters of CAPM and multi-factor models.5 OLS estimation can
be problematic due to its lack of robustness (Rousseeuw and Wagner 1994; Ronchetti
and Genton 2008). In particular, outliers can have a strong effect on the estimated
coefficients.6 The smallest percentage of influential observations that can change the
parameters of the regression line is called breakdown point (Rousseeuw 1984).

In order to achieve a higher breakdown point, a number of robust techniques have
been suggested in the statistical literature (see, e.g., Maronna et al. (2006) for an intro-
duction and overview). These include least absolute deviations (LAD), also called
minimum absolute deviations (MAD) suggested by Sharpe (1971); Cornell and Diet-
rich (1978), and later by Chan and Lakonishok (1992). The former group of authors
applied also trimmed regression quartile (LTQ) estimators. Huber (1973) introduced
M-estimators applied by Martin and Simin (2003) in the context of the CAPM.

In the present application, we concentrate on the LMS estimator proposed by
Rousseeuw (1984) as it is one of the earliest highly robust methods that has also
been applied in econometrics (Zaman et al. 2001). More details on the approach can
be found in Rousseeuw and Leroy (1987) and Rousseeuw and Wagner (1994). Other
robust estimates, such as M-estimators, might exhibit higher efficiency. Therefore, it
should be noted that the implementation presented here does not aim to demonstrate
the superiority of LMS estimates, e.g., with regard to predictive performance,7 but to
provide a proof of concept, i.e., that LMS estimates obtained by means of heuristic

5 We will not comment on the difficulties related to the definition of the variables, in particular the risk free
rate of return and—even more difficult—the market rate of return which should summarize all available
investment opportunities.
6 In the application to financial market data, the meaning of “outliers” is not obvious. In fact, they might
provide relevant information and should not be discarded from the analysis (Knez and Ready 1997).
7 For a discussion of the predictive performance of CAPM and multi-factor models based on OLS estimates
see Simin (2008).
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Fig. 1 Median of squared residuals as a function of α and β

optimization can be used for real life applications. This will allow for further extensions
in the future, e.g., taking into account constraints or nonlinear relationships.8

The LMS estimator for the CAPM is defined as the solution to the following
optimization problem:

min
α,β

(
med(ε2

i,t )
)

, (3)

where εi,t = (ri,t − rs
t ) − α − β(rm,t − rs

t ) according to Eq. (1) above. This results in
a highly complex objective function as illustrated for one problem instance in Fig. 1.

For the multi-factor model (2), the optimization problem becomes

min
α,β1,β2,β3

(
med(ε2

i,t )
)

, (4)

with εi,t = (ri,t − rs
t ) − α − β1(rm,t − rs

t ) − β2SMBt − β3 HMLt .

3 Heuristic strategies

Recent research9 suggests that even an apparently simple optimization problem might
result in an objective function which does not allow for the successful application of
standard numerical approximation algorithms. In this vein, minimizing the median of
squared residuals results in a search space containing many local minima, where tradi-
tional optimization methods can not provide an exact solution. As an example, Fig. 1
provides an illustration (over a finite grid of value pairs for α and β) of the objective
function for the CAPM using the 200 daily stock returns of the IBM stock starting

8 Roko and Gilli (2008) applied successfully another technique (classification trees) to model the non-linear
relationship between expected stock returns and financial and economic factors for the S&P 500.
9 E.g., Gilli and Winker (2007) and the papers in that special issue.
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Algorithm 1 Threshold Accepting Algorithm
1: Initialise nR , nS , and τr , r = 1, 2, . . . , nR
2: Generate at random a solution x0 ∈ [αlαu ] × [βlβu ]
3: for r = 1 to nR do
4: for i = 1 to nS do
5: Generate neighbor at random, x1 ∈ N (x0)

6: if f (x0) − f (x1) < τr then
7: x0 = x1

8: end if
9: end for
10: end for

on 2 January, 1970.10 Note that the illustration might be misleading as it seems to
suggest that the function values for the grid points are connected by a smooth surface.
However, even between the grid points, further local minima might exist.

In principle, it is possible to provide an exact solution to this optimization problem
by exploiting the inherent discrete structure of the problem. However, this comes at
high computational cost which becomes a binding constraint when additional factors
are considered. Furthermore, the technique based on elemental subset regression pro-
posed by Rousseeuw and Leroy (1987) can not easily be generalized for nonlinear
models or when some constraints are imposed on the parameter space.11 Heuristic
optimization methods are well suited to handle such problems. If traditional methods
fail due to the existence of many local optima, the performance of optimization heuris-
tics will typically dominate them in terms of solution quality. In the following, we will
analyze the performance of two heuristic methods for the LMS estimation problem,
TA and DE.

3.1 Threshold accepting

Originally devised by Dueck and Scheuer (1990), TA has proven to be a simple, pow-
erful search tool for many types of optimization problems. A key advantage of TA is
that it enables the search to escape local minima. Here we present a modified version
of the standard TA algorithm for the LMS estimation problem.12 Algorithm 1 pro-
vides the general outline. First, the number of rounds nR and the number of steps per
round nS are initialized as well as the threshold sequence τr . Next, a random solution
x0 is chosen (2:), which corresponds to a vector of parameter values (α, β) for the
CAPM. Then, in each round r, nS local search steps are executed for a fixed value of
the threshold τr , which determines (6:) to what extent not only local improvements,
but also local impairments are accepted. In each search step i , a random neighbor x1

10 In passing note that the sample size used for the estimation in our application is less than one year.
Thus, it is substantially lower than the standard practice of 5 years used in industry (Simin 2008, p. 358).
However, repeating our analysis with larger samples does not affect the qualitative findings.
11 One example is the constraints for the CAPM coefficients resulting from the international CAPM as
discussed by Engel and Rodrigues (1993).
12 A description of the general form of the algorithm and its behavior is given by Winker and Maringer
(2007b). For a further, comprehensive overview see Winker (2001).
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Algorithm 2 Data Driven Generation of Threshold Sequence
1: Initialize nR , lower quantile α, nD = [nR/α]
2: for r = 1 to nD do
3: Generate at random a solution xc

r ∈[αlαu ]×[βlβu ]
4: Generate at random a near neighbor solution xn

r ∈ N (xc
r )

5: Calculate �r = | f (xn
r ) − f (xc

r )|
6: end for
7: Sort �1 � �2 � · · · � �nD
8: Use �nR , . . . , �1 as threshold sequence

of the current solution x0 is generated by minor random modifications of α and β. The
objective function f returns the median of the squared residuals. A comparison of the
two solutions determines whether the current solution is kept or is replaced by x1 if
the new solution is better or at least not worse by more than the current threshold τr

(7:). The algorithm terminates after an a priori fixed number of nR × nS iterations.
Thereby, the threshold sequence τr determines the search behavior of the algo-

rithm. Broadly speaking, the TA search behaves like a random search in the initial
stages, for large values of τ , and gradually transforms into a greedy search, as τ → 0.
The degree of randomness in the initial stages depends on the starting value of the
threshold sequence; the degree of ‘greediness’ in the latter stages depends on how
the threshold is reduced. Rather than guess the first and last values of the threshold
sequence and refine the values by trial and error, Winker and Fang (1997) suggested a
data driven approach (see also Winker and Maringer 2007b). This method is used in
our implementation. The pseudocode for the data driven generation of the threshold
sequence is provided in Algorithm 2.

Returning to the main TA algorithm, we select reasonable boundaries for the search
space [αlαu] × [βlβu] and generate a starting point x0 at random within this area (2:).
Then, in each step i , a further random solution is generated within a neighborhood
of the current solution, N (x0). There are several options for the shape of the neigh-
borhood in a two dimensional search space. However, a hyper-rectangle offers the
advantage of small computational overhead to recalculate its dimensions.13 We set
the initial dimensions of the hyper-rectangle to the boundaries of the search space and
reduce the dimensions proportionally with the number of rounds. Whether we choose
a linear or geometric reduction of the neighborhood dimensions does not appear to
make much of a difference for the quality of the results. The number of reductions to
the hyper-rectangle is nR , equal to the number of values in the threshold sequence.
The rationale behind reducing the neighborhood is closely connected to the behavior
of the search and the threshold sequence. The first neighborhood allows for a gen-
eral exploration of the full search space; at the end there is a limited, concentrated
exploration of a small area, where we assume good quality solutions lie.

One issue that needs to be dealt with is reconstructing the neighborhood if it
exceeds the bounded search space. A straight forward solution is to shift the whole
neighborhood in a vertical, horizontal, or diagonal direction by the amount it has

13 See Winker (2001) and Gilli et al. (2008) for a general discussion on neighborhoods in higher dimensional
search spaces.
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exceeded the bounded search space. It should be emphasized that this would be a less
trivial, computationally more expensive operation with other neighborhood shapes.

3.2 Differential evolution

DE is a population based optimization technique for continuous objective functions
developed by Storn and Price (1997). The algorithm starts with a randomly initialized
set of candidate solutions P(1)

j,i each corresponding to a parameter vector (α, β) for the
CAPM and (α, β1, β2, β3) for the multi-factor model, respectively. Then, for a prede-
fined number of generations, the elements of the population are updated by generating
linear combinations of existing elements and random crossover. Finally, the objective
function value of the new candidate solution is compared with that of the original
element. If it is lower, the new candidate solution replaces the old one. Algorithm 3
provides the pseudocode of our implementation.

Algorithm 3 Differential Evolution Algorithm
1: Initialize parameters n p, nG , F and C R

2: Initialize population P(1)
j,i , j = 1, . . . , d, i = 1, . . . , n p

3: for k = 1 to nG do
4: P(0) = P(1)

5: for i = 1 to n p do
6: Generate r1, r2, r3 ∈ 1, . . . , n p, r1 �= r2 �= r3 �= i

7: Compute P(υ)
.,i = P(0)

.,r1 + F × (P(0)
.,r2 - P(0)

.,r3 )

8: for i = 1 to d do
9: Generate u ∼ U (0, 1)

10: if u < C R then
11: P(u)

j,i = P(υ)
j,i

12: else
13: P(u)

j,i = P(0)
j,i

14: end if
15: end for
16: if f (P(u)

.,i ) < f (P(0)
.,i ) then

17: P(1)
.,i = P(u)

.,i
18: else
19: P(1)

.,i = P(0)
.,i

20: end if
21: end for
22: end for

As mentioned above, the initial population of n p elements is randomly chosen (2:).
Note that the performance of proper implementations should not depend on the spe-
cific choice of starting values in contrast to standard gradient methods. However, they
introduce a stochastic component which can be analyzed when running the algorithm
repeatedly on the same problem instance (see Sect. 5). Therefore, the values for the
initial population are generated as random realizations of uniform random numbers
on the intervals [−0.1, 0.1] for α, [−1, 2] for β (β1), [0, 1] for β2, and [0, 1] for β3.
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Returning to the DE algorithm, for a predefined number of generations nG , the
algorithm performs the following procedure: Each element of the population is updated
by means of differential mutation (6:-7:) and crossover (8:-15:). The superscript υ indi-
cates the mutated vector for every element of the population. Particularly, differential
mutation constructs new parameter vectors by adding the scaled difference of two
randomly selected vectors to a third one (7:). F is the scale factor that determines the
speed of shrinkage in exploring the search space. During crossover, DE generates for
each component a uniform random number u (9:). This is compared with the crossover
probability C R (10:) and determines which initial elements P(0)

j,i will be replaced with

mutant ones P(υ)
j,i resulting in a new trial vector P(u)

j,i . Finally, the value of the objective
function of the trial vector is compared with that of the initial element (16:). Only if
the trial vector results in a better value of the objective function, it replaces the initial
element in the population (17:). The above process repeats until all elements of the
population have been considered. Then, the process restarts for the next generation.

Calibration issues. Price et al. (2005) report that, although the scale factor F has no
upper limit and the crossover parameter C R is a fine tuning element, both are problem
specific. In an attempt to improve the tuning of the algorithm, we conducted repeated
runs for different values of the population size n p and the number of generations nG .
During this initial phase we did not tune the weighting (scaling) factor (F) and the
crossover probability (C R). In order to achieve convergence, we increased the pop-
ulation size n p to more than ten times the number of parameters.14 We observe that
when the best value is found repeatedly for several runs of the algorithm, a further
increase in the number of generations (to more than 100) does not improve the results,
while the computational time increases. With a population size of n p = 20, which
is ten times the number of parameters for the CAPM (2), a number of generations of
nG = 100, and the constants set to F = 0.8 and C R = 0.9, the algorithm typically
converges to the same results in several replications. By increasing the population size
to n p = 50, the algorithm consistently provides identical outcomes in each repetition.

For fine tuning the technical parameters, the algorithm has been run for different
combinations of F and C R. The procedure is illustrated in Algorithm 4 for parameter
values ranging from 0.5 to 0.9.

Algorithm 4 Calibration of Crossover and Scaling Factor Parameters
1: Initialize parameters n p, nG

2: Initialize population P(1)
j,i , j = 1, . . . , d, i = 1, . . . , n p

3: for F = 0.5, . . . , 0.9 do
4: for C R = 0.5, . . . , 0.9 do
5: Repeat Algorithm 3 from line 3-22
6: end for
7: end for

Figure 2 exhibits the dependence of the best value of the objective function obtained
for different combinations of F and C R always for the same problem instance

14 A practical advice for optimizing objective functions with DE is given on www.icsi.berkeley.edu/~storn/.
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Fig. 2 Calibration of technical parameters

(first 200 observations of the IBM stock in our sample). The population size n p and
the number of generations nG are set to 50 and 100, respectively. The left side of Fig. 2
presents the results for a single run of the algorithm, while the right side shows the
mean over 30 restarts. Although the surface is full of local minima for C R below 0.7,
it becomes smoother as C R reaches 0.8 independent of the choice of F . The results
clearly indicate that for higher values of C R, results improve, while the dependency
on F appears to be less pronounced. Based on these results, we use F = 0.8 and
C R = 0.9 for estimating the parameters of the models in the next section.

4 Empirical findings

4.1 Implementation details

For the application of LMS to the CAPM, we consider daily data from the sample
of publicly traded firms comprising the DJIA for the period between 1970 and 2006.
We select six companies, IBM, ExxonMobil (XOM), General Electric (GE), Merck
(MRK), General Motors (GM) and Boeing (BA).

In order to estimate the parameters of the CAPM over a sensible time period, we
use a rolling window of 200 days length moving from 1970 to 2006 day by day. For
each given sample, the parameters α and β are obtained by LMS estimation using
ten restarts of each heuristic.15 The estimates corresponding to the best value of the
objective function are kept.

Next, for given parameter estimates, we forecast the excess return conditional on
the actual market return for the next trading day. In Eq. (5), r̂ a

m,t+1 denotes the actual

15 We only report results for the DE implementation as it appears to be more efficient for the specific
problem as discussed in Sect. 5 below. For the DE implementation, we use n P = 50 and nG = 100. The
computation time for 10 restarts on a given sample amounts to about 1.7 seconds using Matlab 7.4 on a PC
with Intel Duo Core processor operating at 2.39 GHz, running Windows XP OS.
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market return for the next trading day. Then, the conditional forecasts of the excess
returns for stock i is defined as

r̂ f
i,t+1 = α̂ + β̂r̂ a

m,t+1 + νt+1 , (5)

The same calculation is done based on the OLS estimates. Finally, both forecast
errors are compared. Algorithm 5 summarizes the procedure.

Algorithm 5 Rolling window estimation
1: Initialize parameters
2: for t = 1 to 9113 do
3: Run optimization heuristic 10 times for sample [t . . . t + 199]
4: LMS estimates αL M S

t and βL M S
t correspond to best value of objective function

5: OLS estimates αO L S
t and βO L S

t
6: Calculate one-day-ahead conditional forecasts
7: end for

For the Fama/French multi-factor model we use monthly data for the period between
1962 and 2008, except for XOM and MRK stocks for which the sample starts only
in 1970.16 The length of the rolling window is fixed to 10 months. Otherwise, the
procedure is identical to that used for the CAPM.

4.2 Estimation results

The results of the rolling windows estimation for the CAPM are illustrated in Figs. 3
and 4, for IBM and XOM, respectively. In both figures the actual stock returns are
presented in the top graph. The β estimates using OLS and LMS are presented in the
middle and the bottom graphs, respectively.

For a few samples we compared our results for the CAPM with those obtained
from the R implementation of LMS in the MASS-package which should allow to
derive exact solutions by full enumeration based on subset elemental regression.17

Typically, the estimates obtained by DE are almost identical to those results. How-
ever, for a few cases, we found slightly better values for the estimates from DE which
might result from a different definition of the median in the MASS-package.

When looking at the results, the repeated zero values for XOM at the beginning
of the sample appear surprising. This is a result of the LMS approach given that the
dataset contains a large number of zero returns for this period, i.e., no change in the
stock price from day to day. However, apart from these unusual periods, the LMS
estimators appear not to be smoother than the OLS estimators. This might indicate
that the kind of extreme events that make the use of robust estimators preferable are

16 The data for the factors is taken from Kenneth R. French’s website http://mba.tuck.dartmouth.edu/pages/
faculty/ken.french/data_library.html.
17 It should be noted that this approach becomes computationally infeasible as soon as the sample size
becomes large and/or additional regressors are taken into account in a multi-factor model. Furthermore, it
does not allow for imposing constraints on the parameter space in a straightforward way.
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Fig. 3 Actual returns and estimates of β for IBM (1971–2006)

rather rare in our sample. Similar results are found for the other stocks in our analy-
sis.

Figure 5 provides scatter plots of the β estimates obtained by OLS and LMS,
respectively, for the samples including data from 1980 to 2006. Thereby, we exclude
the unusual results for the early 1970s. Obviously, both estimates exhibit a marked
positive correlation, in particular when excluding the zero estimates for XOM. Never-
theless, it also becomes obvious that the correlation is far from being perfect. There-
fore, a comparison of the relative forecasting performance of both approaches will be
provided in Sect. 4.3.

Of course, these results should not be interpreted as general findings on the relative
performance of OLS and LMS. In particular, we have to study in more detail the
effect of the number of extreme events in the period considered. Furthermore, only
the stocks of large companies over a long time period have been considered. It is
certainly worth considering alternative stocks, e.g., high-tech stocks with small capi-
talization, and to identify sub-periods for which the relative performance of OLS
and LMS differs most. Finally, we also considered the three factor model proposed
by Fama and French (1992). The estimation results are available on request. We
will refer to this model with regard to its forecasting performance in the next
subsection.
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Fig. 4 Actual returns and estimates of β for Exxon (1971–2006)
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Fig. 5 Scatter plots of β estimates by OLS and LMS for IBM and Exxon

4.3 Forecasting performance

Although the estimates of the CAPM and the multi-factor model might be of interest on
their own, the typical application consists in using them for (conditional) forecasting
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Table 1 Forecast errors for
LMS and OLS estimates
of the CAPM

Stock LMS OLS

IBM

MSE 0.1835 × 10−3 0.1784 × 10−3

MAE 0.0092 0.0090

XOM

MSE 0.1628 × 10−3 0.1882 × 10−3

MAE 0.0092 0.0093

GE

MSE 0.1760 × 10−3 0.1409 × 10−3

MAE 0.0090 0.0087

MRK

MSE 0.2236 × 10−3 0.1974 × 10−3

MAE 0.0107 0.0099

GM

MSE 0.2233 × 10−3 0.2115 × 10−3

MAE 0.0106 0.0103

BA

MSE 0.3903 × 10−3 0.3471 × 10−3

MAE 0.0136 0.0133

(Simin 2008). Given the marked differences between LMS and OLS estimates for
both models, it is of interest to see how these differences affect their predictive per-
formance. To this end, we calculated the mean squared forecast error (MSE) and the
mean absolute forecast error (MAE) for the one-period-ahead conditional forecasts
for 9113 days for the CAPM and up to 555 months for the multi-factor model. Table 1
summarizes the findings for the CAPM.

For most stocks, the conditional forecasts based on OLS estimates exhibit both
smaller MSE and MAE. The only exception is the XOM stock, for which the MSE
can be reduced when using LMS instead of OLS. The first finding might have been
expected for in sample forecasts as MSE is the objective function for OLS. Out of
sample it does not have to hold, but in the absence of a large number of extreme obser-
vations it will. It is slightly more surprising that OLS based forecasts also dominate the
MAE. Again, this might be a result of too few extreme events or outliers. Therefore,
future work will be oriented towards identifying periods when the relative performance
of LMS or other robust estimators might be expected to be better.

Table 2 reports the MSE and the MAE for the multi-factor model. Given that the
model is based on monthly data, the number of extreme events is expected to be even
smaller than for daily data. Consequently, no advantage of using a robust method like
LMS might be expected under normal market conditions.18

So far, we might see our results as a further contribution to the rather disappointing
evidence regarding the predictive performance of factor models (Simin 2008).

18 When using a very short rolling window of length 25 months the difference between MSE and the MAE
using LMS and OLS become smaller, but still the predictive performance of OLS appears to be superior.
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Table 2 Forecast errors
for LMS and OLS estimates
of a multifactor model

Stock LMS OLS

IBM

MSE 26.3819 9.7380

MAE 3.3231 2.3399

XOM

MSE 11.7523 4.8583

MAE 2.4383 1.6077

GE

MSE 16.6303 6.1978

MAE 2.9205 1.9088

MRK

MSE 24.8864 21.9948

MAE 3.4414 3.5744

GM

MSE 24.0990 17.5200

MAE 3.3519 2.7220

BA

MSE 39.3633 21.4275

MAE 4.5106 3.4279

In particular, no improvement over conventional OLS based forecasts is apparent.
However, these findings do not exclude that the LMS-based forecasts outperform the
OLS approach at least under specific market conditions, e.g., high versus low volatility
regimes. An analysis of this aspect is left for future research.

Finally, the LMS-based forecasts might still contain additional explanatory power
which could be a reward for the high computational cost incurred. To analyze this
possibility, we apply the test proposed by Chong and Hendry (1986) to the forecasts
obtained from LMS and OLS, respectively. Let r̂ e

L M S,t and r̂ e
O L S,t denote the condi-

tional forecasts of the excess returns from the LMS and OLS estimates, and re
t the

actual excess return in period t . Then, estimation of the model

re
t = γ0 + γ1r̂ e

L M S,t + γ2r̂ e
O L S,t + νt (6)

allows to test several hypotheses. If either γ1 or γ2 are equal to zero and γ0 = 0, the
forecasts associated with the nonzero γi is unbiased. If γ1 = 0, the forecasts based on
the OLS estimation dominate, i.e., the LMS based forecasts do not provide additional
information. For γ2 = 0 we obtain dominance for the LMS based forecasts. If both
γ1 = 0 and γ2 = 0 has to be rejected, a combined forecast improves forecasting
performance.

The results for the CAPM are again mixed. Only for the IBM stock, the null
hypothesis that the forecasts based on the LMS estimates have no additional informa-
tional content can be rejected at the 5% level, while for the other stocks the OLS based
forecasts are found to dominate. However, one has to keep in mind that the test is linked
to MSE, for which the OLS estimators should be more suitable. Thus, finding relevant
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additional information content (the parameter γ1 has a value close to 0.2 for IBM)
demonstrates that considering alternative estimators might at least sometimes improve
the predictive performance. The evidence changes when considering the multi-factor
model. There, for all stocks considered both γ1 and γ2 are significantly different from
zero. Although the parameter values are typically smaller for γ1, we find a clear evi-
dence that the conditional forecasts can be improved by combining the OLS-based
forecasts with the LMS-based forecasts. Future research will focus on identifying the
driving forces of this result and its robustness.

5 Rate of convergence

The results show that both optimization heuristics are able to provide high quality
approximations of the LMS estimator. We are also interested in comparing their rate
of convergence, i.e., the quality of the approximation as a function of computational
time.19 Typically, limits in time and computational resources make it unfeasible to
obtain the global optimum in each run with certainty. However, by analyzing the dis-
tribution of outcomes for different parameter settings we can draw some conclusions
on the convergence properties. Tables 3 and 4 provide a statistical summary of the
results obtained by TA and DE for various parameter settings. Again, we consider the
first 200 observations for the IBM stock and the CAPM as our test case.

In our experiments, we calculate the LMS estimators by DE for nine combinations
of population size n p = {20, 50, 100, 200} and number of generations nG =
{50, 100, 200, 1000}. The scaling factor F and the crossover rate C R are kept con-
stant at 0.8 and 0.9, respectively. In the case of TA, the first parameter represents
the number of rounds (corresponding to neighborhood/threshold reductions), nR , and
the second parameter represents the number of neighborhood search iterations nS per
round. Nine combinations of nR and nS are selected from nR = {20, 50, 100, 200}
and nS = {50, 100, 200, 1000}.

The implementation process of all heuristics is subject to random effects—the TA
algorithm generates a random solution from a neighborhood, and the DE algorithm
generates an initial population of random solutions. Furthermore, the selection of can-
didate solutions in each search step is random. In order to obtain some information
on the effect of these stochastic components on the results, we repeat both algorithms
1,000 times for each set of parameter values and report the best value, the median, the
worst value, the variance, the 5th percentile, the 90th percentile, and the frequency of
the best value occurring in all 1,000 repetitions.

Looking first at the TA results in Table 3, we can see that they improve significantly
as the number of threshold reductions, nR , and neighborhood iterations, nS , increase.
However, the best results obtained by TA is not better than any of the best DE results.
Moreover, we observe that typically, the best results for a given parameter setting is
found only a few times out of 1,000 restarts in each TA experiment.

19 For a combined analysis of the rate of convergence of an estimator itself and the convergence of the
approximation by a heuristic optimization algorithm, the reader is referred to Maringer and Winker (2009).
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The results obtained for DE, which are shown in Table 4, contrast markedly with
the results for TA. Here, we observe that DE converges close to the global optimum,
in almost every restart when population size and generations are at least 50 and 100,
respectively. The number of generations is the parameter which controls the consis-
tency of the algorithm. Even with a population size of 20 the algorithm exhibits a high
frequency of convergence when the number of generations is 100 or more. In fact, in
this case, the best value is found in more than 90% of the repetitions as indicated by
the 90%-quantile (q90%).

The superior performance of DE is attributed to the fact that the search is run on
a continuous search space. Given that it is a population based approach, it is quite
efficient in providing good approximations once the region of the global optimum
is identified. A simple local search heuristic as TA, by contrast, will have to spend
a large number of search steps with decreasing threshold values in such a region before
it eventually approximates the global optimum up to several digits precision. How-
ever, as pointed out above, the LMS estimation problem could also be interpreted
as the search on a discrete search space making use of ideas from elemental subset
regression. Then, the relative performance of TA might improve substantially as the
results by Fitzenberger and Winker (2007) for the related problem of censored quantile
regression show.

Nevertheless, it is useful to report how much more efficient DE is than TA for
the given problem formulation. DE and TA are different search heuristics, for which
the main computational burden is the repeated calculation of the objective function.
Therefore, we use this as the measure for efficiency. In each TA paired DE experiment,
i.e., in the corresponding lines of Tables 3 and 4, we calculated the objective function
the same number of times. Considering, e.g., for TA the experiment with nR = 20 and
nS = 1000 (line 4), we find that it has a lower variance than the paired application
of DE. Nevertheless, the best result for TA is still slightly worse than the best result
obtained by DE. Again, this difference in efficiency might be attributed to the difficul-
ties TA faces in the fine tuning of continuous variables. Looking at the 5th percentile
we can state that in at least 5% of the repetitions both heuristics find the best solution.

To summarize, the results we obtain indicate the superiority of DE in terms of con-
sistency and efficiency for LMS estimation, at least for the specific applications to the
CAPM and multi-factor model and the datasets considered.

6 Conclusion and further work

The LMS estimator is considered for obtaining robust estimators of the parameters of
the CAPM and a multi-factor model. It is shown that optimization heuristics like TA
and DE are suitable to solve the resulting optimization problem. From our results, DE
appears to be more efficient than TA, at least when the problem is considered as an
optimization problem on a continuous parameter space. Making use of the ideas from
elemental subset regression would allow to constrain the search on a discrete subset.
Then, the relative performance of TA might improve. Such a comparison is left to
future research.
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In fact, efficient implementations of DE allow a fast and reliable estimation of the
parameters of both models by LMS. This is demonstrated by a rolling window analysis
on a sample of six publicly traded firms with daily data for the CAPM (1970–2006)
and monthly data for the multi-factor model (1970–2008). The results indicate that
the estimates obtained by LMS differ substantially from those resulting from OLS.
However, the LMS estimates do not exhibit less variation as might have been expected
from the outlier related argument. Furthermore, the relative performance of both esti-
mators in a simple one-period-ahead conditional forecasting experiment is mixed. In
most cases, both the MSE and the MAE are smaller for the conditional forecasts based
on the OLS estimation. However, it is shown that the forecasts based on the LMS esti-
mators provide additional informational content. Thus, it might be justified to incure
the additional computational load for obtaining the LMS estimators.

Some extensions of the paper are straightforward based on the results presented.
First, the method should be applied to different data sets, e.g., stock returns from other
stock indices or stock markets. Furthermore, it would be of interest to identify in more
detail the situations where the estimation and forecasts based on LMS outperform
OLS and vice versa.
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